ERGODIC DECOMPOSITION
OF A TOPOLOGICAL SPACE

BY
S. R. FOGUEL

ABSTRACT
Given a positive contraction, P, on C(X) we define the conservative and
dissipative parts of P and establish divergence of X P"f(x) on the conservative
part of X.

Let X be a locally compact normal space which is also ¢ compact: X =UX,,
where X, is compact. In order to avoid topological difficulties we shall assume
also that every Borel set is a Baire set.

Let P be an operator on the space of real valued, bounded and continuous
functions, C(X), such that:

(D Pt and if f=0 then Pf=0.

Every functional on C(X) is given by a regular, bounded, finitely additive measure:
x*f = [fdp. Every such measure is ¢ additive on every compact set. See
[1, IV. 6.2 and IIL 5.13].

Let us assume, in addition to (1), that
) If 0L u is a o additive regular measure then so is P*p.
In particular P*§, is o additive where &, is a unit mass at x. Define
3 P(x, A) = P*$,(A).

then P(x, - ) is a ¢ additive positive and regular measure, on the Borel sets, with
P(x,X) £ 1. Now, if feC(x) then Pf(x) =P*6,(f) = [P(x,dy)f(y)eC(x) and
is thus measurable. The set of functions f such that [ P(x,dy)f(y) is measurable,
is an additive and monotone class and thus includes every bounded Borel function.
Thus:

6] P( - ; A) is measurable for every Borel set A.
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If 0 £f is measurable the operator P extends to f by Pf(x) = fP(x, ay) f(»)
and Pf is again measurable.
Note that (2) was used for y = J, only.

In particular Pf is defined for every non-negative lower semi-continuous
function f. By [3, page 176] Pf is again lower semi-continuous. Thus

(5) Let¥={f][0<f<1andfislower semi continuous} then PU = .

In order to define the dissipative part of X we shall use the class U, :

(6) A, = {f|fe¥, Pf<fand lim P"f(x) = O for every x € X}.

The class U, is not empty since 0 ;. The dissipative part of X will be denoted
by W:

@) W= {W;|feU,} where W= {x|f(x)>0}.

Note that W, is an open set and so is W.

LEMMA 1. Let K be a compact set in W. There exists a function feW, such
that f(x) =0 >0xeK.

Proof. Since K is compact there exist functions fi,---,f, in U, such that
KelJi<1W,, but iy Wy, = Wyppn_ s, and f=1/nXl f;e;. too. Now
Kc U;‘,L 1 {x|f(x) > 1/m} and again a finite union will suffice since K is compact.

THEOREM 2. Let K be a compact set in W then lim,_, , P"14(x) = 0 hence for
every measure lim,_, , P*"u (K) =0 and if p is invariant then p(W) = 0.

REMARK. 1y is the characteristic function of K, and by a measure we mean,
unless otherwise stated, a non-negative ¢ additive finite measure.

Proof. Let fe, such that 1/6f= 1 then Py (x) £ 1/6P*f (x) - 0. Now
if u is a measure P*"u (K) = u(P"15) — 0 by the Lebesgue Dominated Convergence
Theorem. Finally if g is invariant it vanishes on every compact subset of W. since
u is regular and X is ¢ compact p vanishes on W too.

THEOREM 3. P(x,W)=0x¢ W.

Proof. Since P(x, - ) is a regular measure and X is ¢ compact it is enough to
prove that P(x, K) =0 x ¢ W and K is a compact subset of W. Use Lemma 1 to
find feU, with f = 61g then if x¢ W
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If f, and f, are in C(X) and they differ on W only, then f; — f, is bounded by
a multiple of 1,,; hence Pf,(x) = pfy(x) if x ¢ W. It is thus possible to consider P
on the complement of W.

DEerFINITION. The operator P is called conservative if W = @ or equivalently
A, = {0}.

THEOREM 4. Let P be conservative. Let 0 £ fe C(X) and Pf<f. Then Pf=f
and P1;,,=1;, for every a =2 0. Thus P1=1.

Proof. Put f, =f—Pf then 0<f,eC(X) and g=2X2,P", is lower
semi-continuous and bounded by f. Put h = min(g, 1) then Ph < Pg, Ph <1 or
Ph < halso PPh £ P'g = 2O, P"f; = O.o,. Thus h e, and since P is conserva-
tive h = 0 therefore g = 0 and f = Pf. In particular P1 = 1. Letnow a = 0 be given,
f-a)yt—(f—a)y=f—a=P(f—a) = P[(f — a)*] — P[(f — a)~] thus
P[(f— a)~]= (f— a)~. Apply the first part of the theorem to the non-negative
continuous function a — (f — a)~ to conclude that P[(f — a)~] =(f—a)~ and
thus P[(f—a)*]=(f—a)*. Now P[min(n(f — a)*,1)] = min (n(f - a)*, 1)
and again by the first part equality must hold. As n — comin(n(f — a)*,1) = 15,

Let A be a measurable set. Define g, = 1, g, = max(g,, Pg,- ). Following [4]
one sees that the sequence g, increases to the limit i, that satisfies 1, i, <1
Pi, £ i, and is the minimal subinvariant function that majorizes 1,. Note that if A
is an open set i, is lowe semi-continuous function. Thus

LEmMMA 6. Let A be an open set. There exists a function i, €W such that
1,<i, Piy<i, and if f is any measurable function with f=1,, Pf<f then
it sf.

LeEMMA 7. LetP be a conservative operator. Let 0 < f be a measurable function
with Pf <f. Put g = lim P"f. Then for every >0 the set {x|f(x) — g(x) > 6}
does not contain any open set.

Proof. Assume, to the contrary, that 4 is an open set and 1, < 1/6(f — g).
Then i, £1/6(f — g) and lim P"i, = 1/6lim P*(f — g) = 1/6 (lim P"f — g) = 0 and
i, €W,. Thus 4 is empty since P is conservative.

THEOREM 8. Let P be a conservative operator. If 0 Zf is lower semi-
continuous and Pf < f then Pf < f on a set of the first category.
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Proof. Let a, b be rational numbers 0 £ b < a. The set
{x|f() > a} n{x|Pf(x) S b}
does not contain any open set by Lemma 7. But this set,

{x|f(x) > a} — {x| Pf(x) > b},

is the difference of two open sets and must be contained in the boundary of
{lef (x) > b} which is nowhere dense. (This observation is due to S. Horowitz
[see 2]). Thus

{x|Pf(x) <f)} =U[{x|f(x) > a} N {x| Pf(x) < b}
where 0 < b < g are rational]

is a set of the first category.

THEOREM 9. Let P be a conservative operator. Let 0 < f < oo be a lower semi-

o

continuous function then the set {x |0 < X~ p"f(x) < o0} is of the first category.

Proof. Put g=min( X ,P"f,1) then g is a lower semi-continuous non-
negative function and Pg < g. On the set {x|0 < XP"f(x) < o} the function
g>0 and lim,_, . P*g =0 hence this set is contained in U,‘?:o{x | Pr+lg(x) < Prg(x)}
which is of the first category by Theorem 8.

REMARK. Theorem 9 was proved in [2] using a different method.
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